Evidence for Pitch Context Effects on M100 Latency

Ariane Rhone1,2, So-One Hwang1,2, Rachel McGuire1, Victoria Kronz1, Ben Lane1, Margaret Morey1, Slade Healy1, William J. Iadsardi1,2

1University of Maryland College Park, Department of Linguistics 2Cognitive Neuroscience of Language Laboratory, Department of Linguistics, University of Maryland College Park

\section*{BACKGROUND}

\textbf{M100:} Evoked auditory magnetic field
Latency modulated by various stimulus attributes
- Acoustic properties
 - Pure tone frequency[1]
 - Formant structure/vowel quality[2,3]
- Context
 - Phonological prediction[4]

\textbf{Pitch:}
Perceptual correlate of sound frequency
- Fundamental Frequency (F0) temporal pitch cue
Linguistically relevant
- Stress, prosody, tonal languages

\section*{STIMULI}

\textbf{Acoustic properties:} Latency modulated by various stimulus attributes
- F0 values changed perceived gender of talker
- F0 values harmonically related

\section*{PRESENT STUDY}

\textbf{Investigating acoustic effects:}
Does F0 modulate M100 response?
- Previous studies inconclusive[2,3]
- Possible stimulus confounds
 - F0 values changed perceived gender of talker
 - F0 values harmonically related

\textbf{Investigating context effects:}
Does local pitch context modulate M100 response?

\section*{EXPERIMENT DESIGN}

\textbf{Present vowel pairs:}
\begin{itemize}
 \item [a]-[a] or [u]-[u]
\end{itemize}
- with same, rising, or falling pitch across vowel pair

\textbf{Acoustic effects:}
Compare M100 latency to first vowel (V1)
- 145Hz vs. 245Hz

\textbf{Context effects:}
Compare M100 latency to same token in V1 vs V2 position
Compare M100 latency to acoustically matched second vowel (V2) varying in pitch context

\section*{RESULTS}

\begin{itemize}
 \item \textbf{F0: V1 only}
 \item \textbf{Pitch Context: V1 & V2}
 \item \textbf{Position: V1 vs V2}
 \item \textbf{Vowel Pairing: [a] vs. [u]}
 \item \textbf{F0 Values: 145Hz vs. 245Hz}
\end{itemize}

\section*{CONCLUSIONS & OPEN QUESTIONS}

\textbf{Acoustic/First Vowel Conclusions:}
- Shorter M100 latency to 245Hz \([a]\) than 125Hz \([a]\)
 \begin{itemize}
 \item Why not \([u]\)?
 \end{itemize}
- Low F1 for \([u]\) overlaps with both F0 values tested

\textbf{Context/Second Vowel Conclusions:}
- No overall effect of position (V1 vs. V2)
- Effect of pitch context
 - M100 to V2 in falling context shorter than V2 in same \([a]\) and \([u]\)
 - M100 to V2 in rising context shorter than V2 same - \([a]\) only

\section*{SELECTED REFERENCES}

SH partially supported by NSF IGERT award HRG-0831465 to the University of Maryland. Thanks to Matt Winx & Mathias Schirrmeier for help with stimulus creation. LING499 students and UIED PFNA lab members for feedback, and Max Ehrmann for technical assistance. Contact: arhone@umd.edu