A few more closure properties of RLs

February 13, 2012

A few more closure properties

Recall that the regular languages are closed under intersection.

Theorem 1. If L is a regular language, $\bar{L} = \Sigma^* - L$ is also regular.

Proof. Construct a DFSA A for L. Now construct a new DFSA A' identical to A but with final states $Q - F$. We claim that $L(A') = \bar{L}$: given that $w \in L \iff \hat{\delta}(q_0, w) \in F$, $w \notin L \iff \hat{\delta}(q_0, w) \notin F \iff \hat{\delta}(q_0, w) \in Q - F$. □

Theorem 2. If L_1 and L_2 are regular languages, $L_1 \cup L_2$ is also regular.

Proof. $L_1 \cup L_2 = \overline{\overline{L_1 \cap L_2}}$. Since the regular languages are closed under intersection and complementation, the theorem holds. □

Theorem 3. If L is a regular language, L^R, the set of all strings w such that w^R, the reversal of w, is in L, is also regular.

Proof. (Idea). Remember that we briefly mentioned the ability to add ϵ-transitions to an NFSA. The idea is to reverse δ, so that, if $\delta(q, a) = p$, now $\delta'(p, a) = q$. We make q_0 the sole final state of a such an NFSA, and add a new start state q'_0 which has an ϵ-transition to all states that were previously final states. □