The Pumping Lemma

February 1, 2012

Goals

• Understand what the Pumping Lemma says
• See the proof
• Practice working through some examples

The Pigeonhole Principle

Theorem 1. You cannot put \(m > n \) pigeons in \(n \) pigeonholes without putting multiple birds in one of the pigeonholes. In general, given two finite sets \(A \) and \(B \), if \(|A| > |B|\), then there is no one-to-one mapping \(f : A \rightarrow B \).

This is intuitively obvious, but, as an aside, it is interesting to try and write out a proof. In order to make your intuition precise, you will need to be able to state exactly what you mean by “the set \(X \) is bigger than the set \(Y \)” At any rate, it would be a distraction from the issue at hand.

The Pumping Lemma

Recall that a regular language is any set of string that is the language of some DFSA \(A \). Recall that a DFSA is a machine which operates only by moving through a finite set of states, reading a string one symbol at a time. It operates using a transition function \(\delta \), so that we interpret \(\delta(q, a) = p \) as “if the machine is in state \(q \) and reads an \(a \), it will move to state \(p \)”; we extend this to strings using an extended transition function \(\hat{\delta} \), so that we interpret \(\hat{\delta}(q, w) = p \) similarly, but with a sequence of symbols rather than just one. The extended transition function, recall, was defined as:

\[
\hat{\delta}(q, x) \begin{cases}
q & |x| = 0 \ (\Rightarrow x = \varepsilon) \\
\delta(q, x) & |x| = 1 \\
\delta(\delta(q, a), w) & x = aw, |a| = 1, |w| \geq 1 \\
\text{undefined} & \quad \quad \quad \quad \text{undefined} \\
\hat{\delta}(\delta(q, a), w) & x = aw, |a| = 1
\end{cases}
\]
Theorem 3. Given an automaton with transition function \(\delta \), if \(w = xz \), then \(\hat{\delta}(q,w) = \hat{\delta}(\hat{\delta}(q,x),z) \).

Proof. By induction on the length of \(x \). For \(|x| = 1 \), the claim holds by the definition of \(\hat{\delta} \). Suppose the claim holds for any \(x \) with \(|x| = k \). Consider some \(x \) with \(|x| = k + 1 \). Let \(x = ay \), \(|a| = 1 \), \(|y| = k \). For any \(z \),

\[
\hat{\delta}(q,xz) = \hat{\delta}(q,ayz) = \hat{\delta}(\hat{\delta}(\delta(q,a),y),z) \]

by the inductive hypothesis. But \(\hat{\delta}(\delta(q,a),y,z) = \hat{\delta}(\hat{\delta}(q,a),z) = \hat{\delta}(\hat{\delta}(q,x),z) \) and the claim holds by induction.

Consider the fact that, in order for such a machine to be able to read arbitrarily long strings—that is, in order for the machine not to have a maximum string length, \(p \)—there must be a cycle in the state graph. But the fact that the current state fully defines the action of the machine on reading a given string \(y \) means that, if \(y \) leads us through a cycle, then we can not only read \(y \), but also \(yy \), \(yyy \), and so on, and for the machine all will be equivalent.

Definition 4. Given a regular language \(L \), we say string \(w \in L \) contains a substring \(y \) that can be pumped in \(L \) if we can decompose \(w \) into \(x, y, z \) such that:

(i) \(w = xyz \)
(ii) \(y \neq \varepsilon \)
(iii) For all \(i \geq 1 \), \(x y^i z \in L \)

Theorem 5. (Pumping lemma for regular languages.) For every regular language \(L \), there is some maximum length \(p \), a pumping-lemma constant, beyond which any string \(w \in L \) with \(|w| > p \) will have a substring \(y \) that can be pumped in \(L \). Furthermore, if \(p \) is a pumping-lemma constant such that \(y \) can be pumped, then \(y \) can always be found within the first \(p \) symbols of \(w \): if \(w = xyz \), then \(|xy| \leq p \).

Proof. Let \(L \) be a regular language and let \(A \) be a DFSA with \(L(A) = L \). Let \(k \) be the number of states in \(A \), and consider a string \(w \in L \) of length \(|w| > k \). We will show that \(k \) is a pumping-lemma constant, and, thus, that a pumping-lemma constant exists for any regular language.

First we observe that there must be at least one state that the automaton would pass through more than once while reading \(w \): consider the function which tells us the state of the automaton after reading the first \(m \) characters of \(w \), \(D(m) = \hat{\delta}(q_0,w^m_1) \), where \(w^m_1 \) is the prefix of \(w \) up to the \(m \)th symbol. The Pigeonhole Principle tells us that either \(D \) is not defined for more than \(k \) distinct integers, or \(D \) must map two different integers to the same state; since \(A \) accepts \(w \), the first cannot be true. Thus the automaton must pass through at least one state multiple times on reading \(w \).

Now consider the first two distinct positions \(i \) and \(j \) such that \(D(i) = D(j) \), \(j > i \). Let \(x = w^i_1 \), \(y = w^j_{i+1} \), and let \(z \) be the remainder of \(w \), so that \(w = xyz \). We first show that \(y \) can be pumped. Clearly \(y \neq \varepsilon \), since \(j > i \). To see that \(xy^m z \in L \) for any \(m \), let \(q^i \triangleq \hat{\delta}(q_0,x) \). We know that \(\hat{\delta}(q_0,xy) = q^i \), and thus, by Theorem 3, \(\hat{\delta}(\hat{\delta}(q_0,x),y) = \hat{\delta}(q^i,y) = q^j \). Now suppose as an inductive hypothesis that \(\hat{\delta}(q^i,y^m) = q^j \). Then \(\hat{\delta}(q^i,y^{m+1}) = \hat{\delta}(q^i,y^my) = \hat{\delta}(\hat{\delta}(q^i,y^m),y) = \hat{\delta}(q^j,y) \). Thus by induction we see that \(\hat{\delta}(q^i,y^m) = q^j \) for any \(m \). Thus \(\hat{\delta}(q_0,xy^m) = \hat{\delta}(q^i,y^m) = q^j \), and if \(\hat{\delta}(q_0,xyz) = \hat{\delta}(q^i,z) = q_F \in F \), then \(\hat{\delta}(q_0,xy^mz) = \hat{\delta}(q^i,z) = q_F \), and \(y \) can by pumped.

To complete the proof, we show that \(|xy| \leq k \). Recall that \(i \) and \(j \) are the first positions in \(w \) such that \(D(i) = D(j) \). Thus all \(q^l \triangleq \hat{\delta}(q_0,w^l_1) \) are distinct, for \(1 \leq l \leq j - 1 \). By the Pigeonhole Principle, either \(j - 1 < k \), or there must be two integers less than \(j \) that \(D \) maps to the same state; but we have just noted that the second cannot be true. Thus \(j - 1 < k \Rightarrow j \leq k \).

Fact. We can extend the notion of “pumping” to: for all \(i \geq 0 \), \(xy^iz \in L \). The pumping lemma will still hold.

Example 6. Prove that \(a^n b^n \) is not a regular language.
Proof. Suppose the language were regular. Then there would be some pumping lemma constant \(p \). Surely \(a^p b^p \in L \). The pumping lemma tells us that there is a prefix of \(a^p b^p \) which is of length \(\leq p \), part of which can be pumped in \(L \). But since any prefix of \(a^p b^p \) of length \(\leq p \) must consist entirely of \(a \)'s, pumping any substring of length \(k \) would imply that \(a^{p+k} b^p \in L \), \(a^{p+2k} b^p \in L \), and so on. These are not in the language by definition, and so \(a^n b^n \) cannot be a regular language.

Example 7. Prove that \(w w^R \) is not a regular language, where \(.^R \) denotes the reversal of a string, and \(w \) is any string over \(\{a,b\} \).

Proof. Suppose the language were regular. Then there would be some pumping lemma constant \(p \). Surely \(a^p bba^p \in L \). The pumping lemma tells us that there is a prefix of \(a^p bba^p \) which is of length \(0 < k \leq p \), part of which can be pumped in \(L \). But since any prefix of \(a^p bba^p \) of length \(\leq p \) must consist entirely of \(a \)'s, pumping any substring of length \(k \) would imply that \(a^{p+k}bba^p \in L \). Suppose that we could decompose \(a^{p+k}bba^p \) as some string \(w \) followed by its reversal. If \(|w| \leq p+k \), then \(w \) contains no \(b \)'s; but clearly the remainder of the string contains two \(b \)'s, and thus \(w \) cannot be followed by its reversal. Similarly, if \(|w| \geq p+k+2 \), then \(w \) contains two \(b \)'s, while the remainder of the string contains no \(b \)'s, and thus \(w \) cannot be followed by its reversal for the same reason. Thus \(|w| = p+k+1 \) if it exists; but this implies that \(w = a^{p+k}b \) and \(w^R = ba^p \), which is clearly impossible for \(k > 0 \). Thus we have a contradiction and we conclude that the language cannot be regular. \(\square \)