PROCEEDINGS OF THE TWENTY-NINTH ANNUAL MEETING OF THE

BERKELEY LINGUISTICS SOCIETY

February 14-17, 2003

GENERAL SESSION

and

PARASESSION on PHONETIC SOURCES
OF PHONOLOGICAL PATTERNS:
SYNCHRONIC AND DIACHRONIC EXPLANATIONS

Edited by

Pawel M. Nowak
Corey Yoquelet
David Mortensen

Berkeley Linguistics Society
Berkeley, California, USA
meaning structure Finally, I proposed a model of lexical representation and retrieval for Korean on the basis of the findings.

For future research, it would be interesting to collect naturalistic TOI data and examine any significant difference between experimental data and naturalistic data. It would also be useful to test the TOI phenomenon cross-linguistically in order to determine the universality and specificity of lexical representation.

References

Sunyoung Hong
Department of Linguistics
University at Buffalo, The State University of New York
609 Baldy Hall
Buffalo, NY 14260

sh16@acsu.buffalo.edu

Markedness and the Phonetic Implementation of Tone in North Kyungsang Korean

WILLIAM J. IDSARDI & WOOHYEOK CHANG
University of Delaware

0. Introduction

North Kyungsang Korean (NKK) has a pitch-accent system similar to that of various Japanese dialects. A distinctively high pitch can occur in four different positions within the word: final, penultiminate, initial,1 or on the first two syllables (which we will call double). Controversy in analyses has arisen as to which of the positions is the unmarked one. N.-J. Kim (1997) proposes an Optimality Theory (OT) analysis in which the default location of high tone is on the penultiminate syllable of a word; other locations are lexically marked with pre-linked high tones in contrast, S.-H. Kim (1999b) proposes a Simplified Bracketed Grid (SBG) metrical analysis in which the final position of a word is the default position; other locations are lexically marked with foot boundaries. The goal of this study is to employ phonetic evidence to resolve this debate.

We start with a basic observation that marked phonological elements tend to have more extreme values along phonetically measurable scales. A simple relevant case is the Korean stop system and the phonetic scales for closure duration (CD) and voice onset time (VOT). Although CD and VOT vary depending on the position in the word (between, for example, word-initial and intervocalic positions) the relative ranks stay constant. Thus, aspirated stops have longer VOTs, even though the plain stops are moderately aspirated word-initially. Likewise, the CD of tense and aspirated stops is longer than that of plain stops, even though the CD is reduced in word-initial position. Without committing ourselves at this point to an interpretation of such phenomena, we will use this observation to construct a test for the relative markedness of the tones. That is, we should expect to find that marked tones are phonetically more prominent than unmarked ones. In addition, the two contrasting theories make opposing predictions about the relative pitch values for tones in different positions. Under

1 The Daejeo dialect discussed here seems to be undergoing a change in which the initial tones are being replaced by double tones.
the O1 analysis, the stem-final tone is marked in the input. Thus, the \(f_o \) of the final tone in stems is predicted to be higher than the one of the non-final tone in stems (final \(H \geq \) non-final \(H \)). In the SBG analysis, the stem-final tone is unmarked, whereas the non-final tone in stems is marked. Crucial to this analysis, the difference between the two high tones lies in the type of feet (open feet vs closed feet). Since open feet are universally less prominent than closed ones (Idsardi 1994), final tone, which is in an open foot, should be lower than the non-final tone which is in a closed foot (final \(H < \) non-final \(H \)).

In order to test which prediction is correct, we conducted two phonetic experiments measuring the peak \(f_o \) of matched sets of words. The first experiment shows that non-final accents have higher pitch than final accents. The second experiment examines the possibility that the difference observed in the first experiment is due to an effect of final lowering. The peak pitch of doubled high tones in two different environments was measured: word-finally (i.e., in disyllabic words) and non-word-finally (i.e., in trisyllabic words). The results show that there is no significant difference between the two means, which indicates that there is no general process of final lowering operating in NKK.

We therefore conclude that NKK penultimate tones are phonetically higher than final tones, and thus that the penultimate position is the marked one, consistent with the SBG analysis.

1. The tonal patterns of NKK tone

NKK has a pitch accent system in which each phonological word has a single high tone. There are four contrasting locations of a high tone (i.e., final tone, non-final tone, initial and double tone) in lexical items, as illustrated in (1).

(1) a. Final tone: [H] pattern
 satisf 'ladder' *nanwo* 'tree'
 palam 'wind' *knul* 'autumn'

b. Non-final tone: [H-L] pattern
 hanel 'sky' *apoci* 'father'
 pwookasali 'star fish' *yangpok* 'suit'

c. Initial tone: [H] pattern
 myenali 'daughter-in-law' *acime* 'aunt'

2. Double tone: [HH] pattern
 kollim 'picture' *mweykei* 'rainbow'
 sade 'business' *skiting* 'restaurant'

One piece of evidence for the relative markedness of the tones is the tonal changes observed in encliticized words. Stems of types (1b-d) maintain the position of the high tone of the stem in isolation, as shown in (2) and (3). Stems with final tone (1a), however, show a shift with consonant-initial enclitics (4a).

(2) Non-final accented stem + enclitics
 a. *apoci 'father' + cocha 'even' (consonant-initial enclitic) \(\rightarrow \) *apoci-cocha*
 b. *apoci 'father' + eykey 'to' (vowel-initial enclitic) \(\rightarrow \) *apoci-eykey*

(3) Double accented stem + enclitics
 a. *kollim 'picture' + chelem 'like' (consonant-initial enclitic) \(\rightarrow \) *kollim-chelem*
 b. *kollim 'picture' + ulo 'with' (vowel-initial enclitic) \(\rightarrow \) *kollim-ulom*

(4) Final accented stem + enclitics
 a. *satali 'ladder' + cocha 'even' (consonant-initial enclitic) \(\rightarrow \) *satali-cocha*
 b. *satali 'ladder' + eyse 'at' (vowel-initial enclitic) \(\rightarrow \) *satali-eyse*

This pattern is analyzed by S.-H. Kim as indicating that consonant-initial enclitics have an accent, that vowel-initial enclitics are pre-accented, and that the surface tone appears on the first accented position of the word, as long as the stems with final tone are analyzed as unaccented, as discussed in the next section.

2. Two recent phonological analyses on the NKK tone system

The recent accounts of the NKK tone fall into two groups. Some previous analyses claim that the final accent is lexically marked and the penultimate accent is unmarked (G.-R. Kim 1988, N.-J. Kim 1993, 1997, and Kenstowicz and Sohn, 1997). Others (Y.-H. Chung 1991 and S.-H. Kim 1999a, b) propose that the final tone is the lexically unordered one. S.-H. Kim's metrical analysis is summarized in (5). Lexical accents are represented with foot boundaries, and high tone is inserted on the final syllable of the first foot of the word. A difference then arises between closed feet (5b) – those with both foot boundaries – and open feet (5a). Idsardi (1994) argues that closed feet are stronger, and so in the present context we predict that the high tone in (5b) will be higher than that in (5a).

\[
\begin{array}{c|c|c}
\text{Underlying Rep.} & \text{a. Final accented stem} & \text{b. Penult accented stem} \\
\hline
\text{Surface Rep.} & H & \underline{H} \\
\hline
\end{array}
\]

In N.-J. Kim's (1997) O1 analysis, the penult accented stems as analyzed as toneless (unaccented), while final accents are lexically represented with high tone. As S.-H. Kim (1999a) points out, the details of the analysis are not consistent with the principle of Lexicon Optimization in O1, which would select an alternative analysis in which all tones are lexically represented, minimizing the discrepancies.
between input and output representations. In such an analysis none of the stems would be unaccented. Therefore, N.-J. Kim's analysis predicts either that final accents should have higher pitch than non-final ones (with Lexicon Optimization) that they should be equivalent.

Although the two accounts differ radically in the mechanisms and computations employed, we can reduce the controversy to a question of lexically marked versus unmarked tones. The two accounts differ on the relative status of final and penult tones and the difference of the accounts is attributed to the markedness in the underlying representation. As summarized in (6), the phonologically marked stems with regard to a high tone are different from each other depending on which phonological account we follow:

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Final accented stems</th>
<th>Penult accented stems</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.-J. Kim (OT)</td>
<td>Marked</td>
<td>Unmarked/Marked</td>
</tr>
<tr>
<td>S.-H. Kim (SBG)</td>
<td>Unmarked</td>
<td>Marked</td>
</tr>
</tbody>
</table>

3. Phonetic realization of NKK tone

So far, we have briefly reviewed two competing accounts of tone in NKK stems. Let us now attempt to establish which phonological account better correlates with phonetic evidence on the NKK tones. Based on the above observed phonological controversy, it is important to make some possible predictions for the following experiment, as illustrated in (7).

(7) a) Pitch predictions from N.-J. Kim's OT analysis

\[
\text{final } H = \text{ final } H \text{ with vowel-initial elicitics } \geq \text{ penult } H
\]

\[
\begin{array}{ccc|c|c|c}
 & H & H & \geq & \geq \left. \begin{array}{c}
 x \\
 x \\
 x
\end{array} \right| x \times x \\
\end{array}
\]

b) Pitch predictions from S.-H. Kim's SBG analysis

\[
\text{final } H < \text{ final } H \text{ with vowel-initial elicitics, penult } H
\]

\[
\begin{array}{ccc|c|c|c}
 & H & H & = & = \left. \begin{array}{c}
 x \\
 x
\end{array} \right| x \\
\end{array}
\]

\[
\left(x \times x \right) \times \left(x \times x \# \right) x x = \left(x \times x \right) x
\]

Under reasonable assumptions about phonology phonetics interface (in particular a principle of no markedness flip) the two hypotheses make phonetically different predictions. From N.-J. Kim's OT analysis, we can infer two feasible predictions, as shown in (7a) First, all of the high tones, in terms of F_0, should be the same in the final accented stems, the final accented stem plus vowel-initial elicitic forms, and the penult accented stems Second, the stem-penultimate high tone should be lower than the stem-final high tone in the isolated stems as well as in the elicitized words, since the final H marked from the beginning should be more prominent than the penult H specified only in the output (parallel to the moderate VOT observed in initial plain stops).

3.1. Experiment 1: comparison between final and penult tones

The purpose of this experiment is to test the predictions outlined in (7). If the subsequent experiment reveals that the F_0 of the stem-final high tones in the isolated stems and the elicitized words are as high as or even higher than the F_0 of the penult high tones, as illustrated in (7a), we would support N.-J. Kim's OT analysis. Conversely, if the result confirms the lower pitch value in the high tone of the final accented stems than in the high tone of the elicitized words and penult accented stems, as in (7b), we can support S.-H. Kim's SBG analysis.

3.1.1 Methods

Ten male native speakers of NKK participated in this experiment. Details about the participants are given in Chang (2002). The thirty words listed in (8) were selected as stimuli (e.g., ten words with a final high tone + ten words in their combination with vowel-initial elicitics + ten words with a penult high tone)

(8) Stimuli used in experiment 1

<table>
<thead>
<tr>
<th>Final accent</th>
<th>Final accent + elicitic</th>
<th>Penult accent</th>
</tr>
</thead>
<tbody>
<tr>
<td>naymnj</td>
<td>'pan'</td>
<td>pinu</td>
</tr>
<tr>
<td>satal</td>
<td>'ladder'</td>
<td>tajjini</td>
</tr>
<tr>
<td>matang</td>
<td>'yard'</td>
<td>tangmyen</td>
</tr>
<tr>
<td>koa</td>
<td>'orphan'</td>
<td>congali</td>
</tr>
<tr>
<td>naynwu</td>
<td>'tree'</td>
<td>purmawiki</td>
</tr>
<tr>
<td>mwuwu</td>
<td>'radish'</td>
<td>twangwaun</td>
</tr>
<tr>
<td>tongnwun</td>
<td>'fellow'</td>
<td>mwunsiap</td>
</tr>
<tr>
<td>naynwu</td>
<td>'heart'</td>
<td>mautsi</td>
</tr>
<tr>
<td>sevayn</td>
<td>'the West'</td>
<td>vangupok</td>
</tr>
</tbody>
</table>

The syllables with high tone, underlined in (8), are the target syllables for the measurement of F_0. Unfortunately, F_0 can be affected by various other factors, such as the type of onset and the vowel quality. In order to at least partially control for these factors, the stimuli are composed of ten with the same target syllable. We did not include consonant-initial elicitics because the number of consonant-initial elicitics is limited, making it difficult or even impossible to construct triplets using the same target syllable as in the other items.
3.1.2 Procedure
The test words in (8) were written on index cards in Korean orthography. Each speaker read them, in random order, at a natural, comfortable speed. Two repetitions of the entire stack of cards were produced, resulting in a total of 60 utterances (30 stimuli x 2 repetitions). The utterances were recorded onto a digital mini disc, using a high-quality microphone (Sony ECM-MS907) and mini-disc recorder (Sharp MD-MT821-A). The recorded words were then converted to WAV files on a computer at a 22 kHz sampling rate and 16 bit quantization. Next, F0 contours were produced and measured by using Speech Analyzer 1.5, and the peak F0 values of each word were collected.

3.1.3 Results
For each type of the stimuli 200 measurements were taken (10 subjects x 10 items x 2 repetitions). The mean F0 and the standard deviation for each type are shown in (9). The final accent (9a) had the lowest mean pitch value.

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Mean F0</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>a Final accent</td>
<td>200</td>
<td>123.4 Hz</td>
<td>14.5 Hz</td>
</tr>
<tr>
<td>b Final accent + enclitic</td>
<td>200</td>
<td>137.3 Hz</td>
<td>15.9 Hz</td>
</tr>
<tr>
<td>c Penult accent</td>
<td>200</td>
<td>138.9 Hz</td>
<td>16.3 Hz</td>
</tr>
</tbody>
</table>

A repeated measures analysis of variance (ANOVA) shows that the difference in the mean F0 values among the items is significant: $F(2,297) = 29.8, p < 0.0001$. A pairwise post-hoc Scheffé test, (10), shows that (9a) is significantly lower than (9b) and (9c), but that there is no significant difference between (9b) and (9c).

| Summary statistics for the Scheffé post-hoc test on F0 for the three items |
|-------------------------------|---------|---------|------------------|
| Contrast | Mean difference | P-Value |
| (9a) final vs (9b) final + enclitic | 13.9 Hz | 0.0001 |
| (9a) final vs (9c) penult | 15.5 Hz | 0.0001 |
| (9b) final + enclitic vs (9c) penult | 1.6 Hz | 0.774 |

Since we do not know from the statistics whether this categorization reflects a uniform pattern across all subjects, we should examine the individual subjects' performances. For every subject, the pitch of the final accent in stems is consistently less than both of the other accent types, as shown in (11). On the contrary, no consistent patterns are found when the final accent in enclitic words is compared with the penult accent in stems. Only six out of ten subjects show a higher F0 in penult position.

Due to the consistent lower F0 of the stem-final accent, it should be differentiated from the other accents, which in turn leads us to categorize it as a different group separate from the other accents. This statistical analysis, therefore, confirms the previous speculation that the final accent in stems is less marked than the other types, as predicted by S-H Kim's SBG analysis.

3.2 Experiment 2: the effect of utterance boundary tone
Although experiment 1 supports S-H Kim's SBG analysis, it is possible that final high tones are lowered generally in NKK. That is, perhaps there is no difference in the original pitch targets for the tones, but the lower final tone is due to the influence of a final 1% boundary tone, as illustrated in (12).

<p>| The comparison of F0 (Hz) among the three items within each subject |</p>
<table>
<thead>
<tr>
<th>Subject</th>
<th>Stem-final H</th>
<th>Stem-final H with enclitics</th>
<th>Stem-penult H</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>112</td>
<td>< 127</td>
<td>< 130</td>
</tr>
<tr>
<td>S2</td>
<td>133</td>
<td>< 160</td>
<td>= 160</td>
</tr>
<tr>
<td>S3</td>
<td>144</td>
<td>< 155</td>
<td>< 157</td>
</tr>
<tr>
<td>S4</td>
<td>125</td>
<td>< 142</td>
<td>< 148</td>
</tr>
<tr>
<td>S5</td>
<td>121</td>
<td>< 133</td>
<td>> 132</td>
</tr>
<tr>
<td>S6</td>
<td>119</td>
<td>< 128</td>
<td>< 131</td>
</tr>
<tr>
<td>S7</td>
<td>96</td>
<td>< 110</td>
<td>< 110</td>
</tr>
<tr>
<td>S8</td>
<td>143</td>
<td>< 154</td>
<td>< 156</td>
</tr>
<tr>
<td>S9</td>
<td>114</td>
<td>< 126</td>
<td>> 125</td>
</tr>
<tr>
<td>S10</td>
<td>128</td>
<td>< 138</td>
<td>< 140</td>
</tr>
</tbody>
</table>

Since the high tone H1 is located on the final syllable of the final accented stem in (12a), a 1% boundary tone might affect this high tone, lowering it somewhat. Contrary to H1, H2 in (12b) is not adjacent to the 1% boundary tone, which then might prevent H2 from being lowered.

3.2.1 Methods
Noticing that the potential lowering effect in (12) is mediated by the number of syllables, we tested this possibility by comparing the pitch value of the double tones in two environments: word-final (i.e., in disyllabic words) and non-word-finally (i.e., in trisyllabic words). While the doubly linked high tone in a disyllabic word is adjacent to the following boundary tone (1%), the one in a trisyllabic is not adjacent to the boundary tone (1%) due to the final syllable unlinked to H. Therefore, twelve pairs of disyllabic and trisyllabic words were constructed, (13). If there is a general 1% boundary effect, the tone in disyllabic words should be lower than that in the matched trisyllabic words.
3.2.2. Procedure
The procedure of this experiment follows that of experiment 1. The same speakers who participated in the experiment 1 were asked to read the test words in (13). Two repetitions of each word were collected for a total of the 48 utterances (24 stimuli x 2 repetitions) for each speaker.

3.2.3. Results
For each subject, the mean values for the two types of the stimuli were obtained and used for the analysis, as in (14).

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Mean F₀</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disyllabic words</td>
<td>240</td>
<td>129.2 Hz</td>
<td>15.5 Hz</td>
</tr>
<tr>
<td>Trisyllabic words</td>
<td>240</td>
<td>131.0 Hz</td>
<td>16.0 Hz</td>
</tr>
</tbody>
</table>

The mean F₀ for disyllabic words (129.2 Hz) is slightly lower than for trisyllabic words (131.0 Hz), but this small difference (1.8 Hz) is not statistically significant, t(238) = -0.886, p = 0.3766. The observed power for this effect size is only 0.1188, so with this number of subjects we only have a 12% chance of statistically determining a difference of 1.8 Hz at an alpha level of 0.05. However, the smallest detectable difference for a power of 0.95 given the observed measurements is 8.5 Hz. Therefore, we can be 95% confident that the true difference between the means is less than 8.5 Hz. This is much less than the 14 Hz difference observed in experiment 1, and therefore we conclude that final lowering is not the cause of the difference observed in experiment 1.

Looking at the individual subjects we also fail to find a consistent direction of difference between the types. Disyllabic words have a lower mean F₀ for seven subjects, but three subjects show the opposite pattern, (15).

<table>
<thead>
<tr>
<th>Subject</th>
<th>Disyllabic words</th>
<th>Trisyllabic words</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>116</td>
<td>< 117</td>
</tr>
<tr>
<td>S2</td>
<td>136</td>
<td>< 138</td>
</tr>
<tr>
<td>S3</td>
<td>142</td>
<td>< 146</td>
</tr>
<tr>
<td>S4</td>
<td>143</td>
<td>> 142</td>
</tr>
<tr>
<td>S5</td>
<td>124</td>
<td>> 123</td>
</tr>
<tr>
<td>S6</td>
<td>119</td>
<td>> 118</td>
</tr>
<tr>
<td>S7</td>
<td>103</td>
<td>< 106</td>
</tr>
<tr>
<td>S8</td>
<td>153</td>
<td>< 157</td>
</tr>
<tr>
<td>S9</td>
<td>121</td>
<td>< 126</td>
</tr>
<tr>
<td>S10</td>
<td>134</td>
<td>< 138</td>
</tr>
</tbody>
</table>

Therefore, we cannot reject the null hypothesis that the means are the same, and the substantial difference in effect sizes (14 Hz in experiment 1, 1.8 Hz in experiment 2) argues strongly against final lowering as an explanation for the results in experiment 1. We should note, however, that Chifin Shih (personal communication) has suggested to us that doubled tones may be universally immune from lowering effects, should we be the case then the markedness and lowering explanations would be confounded in NKK and could not be resolved by empirical tests.

4. Discussion and Conclusion
We have considered two accounts of NKK tone that differ in the markedness assigned to final and penult tones in the analyses N-J Kim's OT account proposes that the penult accent is unmarked, whereas S-H Kim's SBG account proposes that final accent is unmarked. Assuming that phonological marked elements are usually phonetically implemented with more extreme values, the two accounts then make contrasting predictions about the relative pitch values for tones in different positions. In line with S-H, Kim's SBG analysis, the results obtained in the first experiment revealed that F₀ peaks in the final accent stems are significantly lower than those in both the related encliticized words and the non-final accented stems. In the second experiment, the finding that there is little pitch difference of the tones in the disyllabic and trisyllabic words eliminates the possibility that the lower final tone is due to the influence of a final L% boundary tone. Therefore, we conclude that only S-H Kim's analysis accounts for the significant difference in tone observed in the first experiment and the final accented stems are better analyzed as unaccented stems than as accented stems.

Having established the superiority of S-H Kim's analysis, we wish to elaborate some points. First of all, the greater prominence of marked tones in S-H Kim's analysis is not due to a direct phonetic reflection of contrasting inputs per se, but due rather to a pernicious difference in metrical structure. The marked tones, lexically marked with right parentheses, are found at the surface in closed
feet, whereas the unmarked tones are found in open feet. With the relative strength of closed feet, the only prediction based on SBG Theory is that the tone marked with lexically stored parenthesis is higher than the unmarked tone. Unlike SBG Theory, OT can change the marked tones in the input if necessary, which means we cannot make a coherent prediction within OT.

Also relevant in the discussion of markedness is the range of variation exhibited in different constructions. As we already observed in (4), the high tone of the final accented stem remains in its position when the stem is combined with a vowel-initial enclitic, whereas a high tone shifts to an enclitic when a consonant-initial enclitic is attached to the stem. These two different behaviors of the stem-final tone cannot be found in the stem-penult tone in (2). Since S-H Kim's analysis considers stem-final tone unmarked and stem-penult tone marked, it is the unmarked element which shows more behaviors. This is, we believe, a highly desirable situation in that it is natural that less information in the underlying representation leads to more variation in the surface.

Furthermore, if we combine the results in the first and second experiments, we find, using the Scheffé post-hoc repeated measures multiple comparison test, that the double tone is significantly different from both the final and penult tones, giving a third, intermediate level. The summary statistics where the four items are compared pairwise are shown in (16).

<table>
<thead>
<tr>
<th>Compared Items</th>
<th>Mean Difference</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>stem-final tone vs double tone</td>
<td>6.7 Hz</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>stem-final tone vs stem-final tone + enclitic</td>
<td>13.9 Hz</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>stem-final tone vs stem-penult tone</td>
<td>15.5 Hz</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>double tone vs stem-final tone + enclitic</td>
<td>7.2 Hz</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>double tone vs stem-penult tone</td>
<td>8.8 Hz</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>stem-final tone + enclitic vs stem-penult tone</td>
<td>1.6 Hz</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

In this display, the stem-final tone is significantly different from the other items, as shown in the shaded blocks of the first, the second, and the third rows. In the next two rows, the double tones are also significantly different from the other items such as the tones in encliticized words and penult accented stems. As expected, the mean difference is not significant only when stem-final tone in the encliticized words and the stem-penult tone are compared (p = 0.917). Given this result, the four types of the stimuli can be divided into three categories, as illustrated in (17).

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Pitch Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>final accented stem</td>
<td>double accented stem</td>
<td>encliticized word</td>
</tr>
<tr>
<td>≈ 7 Hz</td>
<td>≈ 7 Hz</td>
<td>7 Hz</td>
</tr>
</tbody>
</table>

References

Chung, Young-Hee. 1991. The lexical tone system of North Kyungsang Korean. PhD dissertation, the Ohio State University, Columbus, OH.

Kim, No-Ju. 1997. Tone, segments, and their interaction in North Kyungsang Korean: A correspondence theoretic account. PhD dissertation, The Ohio State University, Columbus, OH.

Kim, Sun-hoi. 1999a. The metrical computation in tone assignment. PhD dissertation, University of Delaware, Newark, DE.

Multiple Questions in Basque

YOUNGMI JEONG
University of Maryland

1 Background on Multiple Wh-fronting

Extensive research on the syntax of multiple wh-fronting (Rudin 1988, Bošković 1999, 2002, Richards 1997, 2001, Boeckx and Grohmann 2003) has demonstrated the existence of two patterns, the Bulgarian pattern, illustrated in (1), and the Serbo-Croatian pattern, illustrated in (2).

(1) a Koj kogo kakvo e pital? (Bulgarian)
 who whom what is asked
 'Who asked whom what?'
b Koj kakvo kogo e pital?
c *Kogo kakvo koi e pital?
d *Kalvo kogo koi e pital?
e *Kalvo kogo koi e pital?
f *Kogo koi kakvo e pital?
g *Koi e pital kogo kakvo
h *Kogo e pital koi kako
i *Kalvo e pital koi kogo
etc

As (1) shows, Bulgarian forces the highest wh-word to be the topmost element in the "wh-cluster" (so-called superiority effect), and does not impose any further ordering on the remaining wh-fronting. In Serbo-Croatian, no ordering condition at all is observed:

* Special thanks to Cedric Boeckx, Norbert Henzein, Howard Lasnik, Juan Uriagarena, and audiences at Berkeley (Berkeley Linguistics Society 29), University of Pennsylvania (Penn Linguistics Colloquium 27), and University of Maryland (Syntax-Semantics Workshop) for important questions and comments