The Routledge Sociolinguistics Reader

Edited by

Miriam Meyerhoff and Erik Schleef
First published 2010
by Routledge
2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN
Simultaneously published in the USA and Canada
by Routledge
270 Madison Avenue, New York, NY 10016

Routledge is an imprint of the Taylor & Francis Group, an Informa business

© 2010. This collection and editorial matter
© Miriam Meyerhoff and Erik Schleef
Individual essays © individual contributors

Typeset in Perpetua and AkzidenzGroteskBE by
RefineCatch Limited, Bungay, Suffolk
Printed and bound in Great Britain by
MPG Books Group, UK

All rights reserved. No part of this book may be reprinted or reproduced or utilized in any form
or by any electronic, mechanical, or other means, now known or hereafter invented, including
photocopying and recording, or in any information storage or retrieval system, without
permission in writing from the publishers.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data
The Routledge sociolinguistics reader / edited by Miriam Meyerhoff and Erik Schleef.
p. cm.
Includes bibliographical references and index.
1. Sociolinguistics. I. Meyerhoff, Miriam. II. Schleef, Erik, 1971—
PS8556.M4Y45 2010
306.44—dc22
2010002220

ISBN 10: 0-415-46957-0 (pbk)
Nationally [in the United States], African Americans lag behind Whites in median home value (61%; U.S. Census Bureau, 1995). This disparity may follow from such complex and interrelated issues as lower-paying employment (as indicated by a median family income 58% of White households'), self-segregation, and housing discrimination. Varying levels of influence have been attributed to discrimination in the segregation of neighborhoods, from a prominent role where discrimination accounts for 20% to 30% of segregation (Courant, 1978; Tobin, 1982; Yinger, 1986) to a minor role of no more than 15% (Clark, 1986, 1993; Galster & Keeney, 1988). Myers and Chan (1995) place race as a reliable indicator of discrimination in mortgage lending, accounting for 70% of the gap in rejection rates while controlling for other factors. Regardless of the size of the effect, discrimination is indisputably present in our society and led Congress in 1988 to amend laws protecting against housing discrimination.

Intentional discrimination is fomented when an applicant's race (or gender) is evident to a potential home seller (or employer, etc.). At least two cues to race and gender act as triggers: visual and auditory. These two stimuli influence a minority's success when entering into, and advancing within, the housing market. This chapter examines the linguistic nature of housing discrimination among minority groups, studying the nature of auditory discrimination of racial speech cues. We are particularly interested in the possibility of auditory discrimination in the absence of any visual cues and in determining the existence of micro-linguistic (i.e., phonetic) markers of dialect (Labov, 1972b). Our preliminary findings from four experiments indicate that (a) dialect-based discrimination takes place, (b) ethnic group affiliation is recoverable from speech, (c) very little speech is needed to discriminate between dialects, and (d) some phonetic correlates or markers of dialects are recoverable from a very small amount of speech.

Throughout this chapter we discuss three broad dialects of American English: African American Vernacular English (AAVE), Chicano English (ChE), and Standard American English (SAE). These dialects are chosen because of data availability and the fairly strong ethnic group affiliation tied to the dialects (confirmed in the second experiment described below). [. . .]

We began by asking whether dialect discrimination is possible by using phonetic cues alone, and if it is possible, what cues trigger discrimination. [. . .] [W]e seek to demonstrate that the identity of race (or national origin) is reflected, not only visually but also auditorily in an individual's speech. In addition, we endeavor to establish that listeners hear and positively identify a speaker's dialect with great accuracy. The following experiments reveal the possibility of auditory discrimination and the probability of social discrimination by auditory identification of dialects. [. . .]

EXPERIMENT 1

Baugh's personal experiences while trying to rent an apartment in the San Francisco area provided an impetus and opportunity to study dialect identification and discrimination. This portion of our research addresses the issue of whether housing discrimination is exhibited in the absence of visual cues. Most legal cases appealing to the Fair Housing and the Civil Rights Acts try to establish that the defendant discriminated against the plaintiff because of obvious visual cues. [. . .] [T]his experiment indicates that housing discrimination arises in the absence of these visual cues. In predominantly White geographic locales where discrimination against minorities would potentially be the greatest, the percentage of appointments secured to view housing is less than chance for callers using nonstandard dialects. Projecting this to the population at large, the evidence shows that a member of a minority group is much less likely to get an appointment to see an apartment in these White locales, even when he or she is qualified to purchase or rent in those areas. In these examples, auditory discrimination arises without visual contact.

[.. .]

We are compelled to understand the possibility of auditory discrimination from cases like *HUD v. Ross* (1994). In this suit, Judge Cregar notes the role accent played in the outcome of the case.

It is undisputed that Magaly DeJesus and Teresa Sanchez are Hispanic. Their distinct Hispanic accents clearly revealed their national origin to Mr. Ross. Although neither filled out a rental application, Mr. Ross did not afford them the opportunity to do so. [. . .] (p. 8)

This example and a few others (e.g., *City of Chicago v. Matchmaker Real Estate Sales Center*, 1992) with respect to Ms. Frazier's "accent") demonstrate that individuals are capable of being held liable because of their auditory assessment of a speaker.

However, not all jurists agree that racial identity is ascertained in the absence of visual prompting.

[.. .]
For our first experiment, the null hypothesis is that there is no significant difference in appointments made by locale by dialect. The test hypothesis entails a relation between the racial and ethnic constituency of a geographic area and the success in establishing an appointment by dialect type.

Method

Baugh conducted the telephone interviews in person. Because Baugh (who is African American) grew up in inner-city communities in Philadelphia and Los Angeles, he is personally familiar with AAVE, ChE, and SAE dialects. This use of a tridialectal speaker controls for cross-speaker variation. In this respect, this study differs from other such guise studies as Lambert and Tucker (1972) and Tucker and Lambert (1975), which use different speakers in experiments determining attitudes toward dialects.

Prospective landlords in five distinct locales were identified by classified advertisements in regional newspapers. Baugh telephoned the landlords on three separate occasions, randomly using each dialect in different sequences with no less than 30 minutes between calls. Each call began with the phrase, “Hello, I’m calling about the apartment you have advertised in the paper.” Different return telephone numbers were used for each dialect, along with different pseudonyms. This procedure of anonymity parallels legally approved practices of testers used by the Department of Housing and Urban Development and similar organizations when suspecting discriminating practices by landlords.

Results and discussion

The results show a clear pattern of potential discrimination associated with the three dialects by geographic area. Thus, we reject the null hypothesis and accept the experimental hypothesis. Tables 9.1 and 9.2 show that the percentage of appointments made in each locale corresponds approximately with the ethnic makeup of the geographic area. Tables 9.2 and 9.3 display 1990 census data for percentage of population who

<table>
<thead>
<tr>
<th>Table 9.1</th>
<th>Confirmed appointments to view apartments advertised for rent in different Greater San Francisco geographic areas (in percentages)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographic area</td>
<td>East Palo Alto</td>
</tr>
<tr>
<td>Dialect guise</td>
<td></td>
</tr>
<tr>
<td>AAVE</td>
<td>79.3</td>
</tr>
<tr>
<td>ChE</td>
<td>61.9</td>
</tr>
<tr>
<td>SAE</td>
<td>57.6</td>
</tr>
<tr>
<td>Total number of calls for each locale</td>
<td>118</td>
</tr>
</tbody>
</table>

Note. AAVE = African American Vernacular English; ChE = Chicano English; SAE = Standard American English.
belong to particular racial and ethnic groups (U.S. Census Bureau, 1990). If the null hypothesis is rejected (i.e., if the positive appointment rate hovered around chance), then we expect a 50% success rate for each cell in Table 9.1. Percentages above and below the 50% mark indicate a variance from chance. By examining all tables, we observe that in the traditionally White areas, Woodside and Palo Alto, the strongest bias is against the non-standard dialects.

[...]

In the present experiment, ChE guises not only follow the general trend of AAVE guises but also have the lowest percentage success rate in securing an appointment. This is even true in the geographic areas where the number of Hispanics exceeds the number of African Americans (San Francisco, Palo Alto, and Woodside).

We conclude, given the evidence of this first experiment, that auditory cues constitute stimuli for disparate impact and nonaccidental disparate treatment cases. [...] Disparate impact cases involve indirect, and often unintentional, cases of discrimination. Furthermore, there may be reasons for the paucity of civil rights cases in which the burden of proof rests at least indirectly on auditory cues, as compared to the preponderance of cases that involve visual ones. One possibility is that the auditory kinds of discrimination are difficult to monitor. In addition, potential householders may scarcely suspect that they are being discriminated against; the landlord subtly discriminates by informing the minority speaker that there are no vacant apartments. This is supported by a survey reported in Clark (1993), indicating that the primary source of discrimination
EXPERIMENT 2

Given that Baugh is tridialectal and might favor one dialect over the others as a default dialect, we might wonder whether the guises in the first experiment are representative of the appropriate racial group and not exaggerated stereotypes instead. Following the first experiment, a series of experiments on “ethnic identification” evaluations were conducted. The next experiment is an attempt to understand whether dialect identification is possible at the macro-linguistic or sentential level. In contrast, subsequent experiments explore identification at the micro-linguistic level.

Much is already known about the sentence- and morpheme-level differences between SAE and AAVE, along with the phonemic and lexical alternations (see, e.g., Baugh, 1983; Dillard, 1972; Labov, 1969, 1972a; Wolfram, 1969). Several of these phonological and morphophonemic differences could possibly affect our research. One of the notable characteristics of AAVE that is different from SAE is the absence in AAVE of certain sonorants, /ɾ ɾ n/, in syllable coda position. Other sounds, as well, may be absent from AAVE, for example, /-s/ suffixes (plural, third person singular, possessive) and consonants (particularly /t d/) from consonant clusters. AAVE also exhibits final obstruent devoicing and consonant mergers, such as [θ ~ f].

Another important nonstandard dialect in the United States is Chicano English (ChE), which is also part of our investigation. Several studies examine the linguistic differences between ChE and SAE (e.g., González, 1988; Penfield, 1984; Penfield & Orstein-Galicia, 1985; Wald, 1984). Particularly important is the phonetic study of Godinez (1984). Again, we need to pay close attention to the phonological and morphophonemic differences between the dialects. Intonation on utterances of all sizes differs between ChE and SAE. For example, utterances in ChE begin at a higher pitch, although ChE intonations pattern more closely with English than with Spanish. Segmental changes differentiate SAE and ChE, for example, palatal interchange, fricative and affricate devoicing, and labiodental fricatives merging into coronal stops. Like AAVE, ChE modifies certain consonant clusters, especially initial and final clusters involving /s/. Unexpectedly, however, the mean duration of ChE vowels is more closely aligned with SAE vowels than with Spanish vowels.

Stimulus tokens for this experiment were recorded by speakers of the three target dialects. The number of speakers, totaling 20, varied across the racial and ethnic groups. In addition, Baugh recorded tokens in each of the three dialects. Each token consisted of the sentence, “Hello, I’m calling to see about the apartment you have advertised in the paper.” The tokens were then randomized for presentation.

In the experimental stage, 421 undergraduate and graduate students at Stanford (382 native speakers of English, 39 nonnative speakers) listened to each token once without response. The students then listened to the tokens a second and a third time, indicating two presumed traits in a forced-choice experiment. The two traits students were asked to evaluate the listeners for were the race/ethnicity and gender of speakers. The possible answers for race and ethnicity were “African American,” “Hispanic
American,” and “European American.” Combined with the two choices of gender, participants selected one of six possible responses for each token.

Given that each token has the possibility of being assigned one of six choices, the null hypothesis is that each guise should be identified correctly 16.6% of the time. We predict instead [. . .] that these guises are identifiable at the same rate as nontridialectal ones.

Results and discussion

The results of this study indicate that participants systematically identified Baugh’s guises as being produced by an African American male (i.e., using AAVE), a Latino (i.e., using ChE), or a White male (i.e., using SAE) (see Table 9.4). Thus, we reject the null hypothesis and accept the test hypothesis.

[. . .] These macro-linguistic cues to dialect present an advantage as they are overt indicators of a speaker’s ethnic identity. The problem, though, that this study faces is in explaining micro-linguistic, or more subtle, cues.

EXPERIMENT 3

To determine the feasibility of investigating the phonetics of dialects, a second perceptual experiment was conducted in which we tested listeners’ ability to recognize dialects at the micro-linguistic, or phonetic, level. The results are intended to contribute to our understanding of the psychological processes enabling phonetic distinctions.

This third experiment deals with two basic issues of dialect production and perception. Dialects differ in their syntactic, morphological, or semantic subcomponents, but our concern is to understand the role played by phonetics and phonology. First, we ask, “How do dialects differ in pronunciation?” and second, “How do listeners identify dialects

<table>
<thead>
<tr>
<th>Dominant dialect/racial identification</th>
<th>Guise or gender</th>
<th>% Correct identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAVE/African American</td>
<td>Male</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Baugh (AAVE)</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>77</td>
</tr>
<tr>
<td>ChE/Hispanic American</td>
<td>Baugh (ChE)</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>79</td>
</tr>
<tr>
<td>SAE/European American</td>
<td>Male</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Baugh (SAE)</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>81</td>
</tr>
</tbody>
</table>

Note. AAVE = African American Vernacular English; ChE = Chicano English; SAE = Standard American English.
by pronunciation?" Because discrimination may crop up in telephone conversations, this experiment helps us better understand the cognitive role phonetics plays in establishing listeners' beliefs about a speaker's racial identity.

Phonetic features in the speech stream [. . .] are used for speaker and dialect recognition. Whether a given feature is contrastive [i.e. used for distinguishing words] or noncontrastive is a language-particular (and dialect-particular) choice and therefore must be learned. The learning results in shared knowledge about society in general, interlocutors' positions in society, and appropriate discourse norms given the discourse situation (Baugh, 1983). [. . .] One consequence of having to learn the phonetic grammar of a dialect is that individual speakers can control several dialects. Competency in more than one dialect is quite common, especially among speakers of nonstandard varieties. Thus, among speakers of AAVE, the presence or absence of /-s/ suffixes is tied to familiarity and dialect group membership, rather than to racial characteristics of the speaker (Baugh, 1983).

[. . .]

The null hypothesis in this experiment is that there is no difference between the dialects by identification. That is, each dialect should display recognition at the level of chance. Instead, we predict that the phonetic characteristics in a short portion of speech are sufficient to trigger identification across the dialects.

Method

For this experiment, only the word hello from Baugh's single-sentence utterances spoken in AAVE, ChE, and SAE were used. The word was extracted from the sentence, "Hello, I'm calling about the apartment you have advertised in the paper." We have several reasons for examining one word. This allowed us to hold external factors to a minimum. Second, it also illustrates how little speech is needed for dialect identification. "Hello" is a self-contained utterance, making perceptual studies more natural. By focusing on one short word, we are able to hold utterance duration well below one second (\(\bar{x} = 414\) msec.), making it comparable to other studies (e.g., Walton & Orlikoff, 1994). The word hello neutralizes lexical, syntactic, and phonological differences across dialects. In other words, it lacks the environment in which we expect other dialectal variations.

This experiment was conducted during two semesters, Spring and Fall 1997. For this study, we used 50 undergraduates at the University of Delaware (Spring 1997: 30; Fall 1997: 20). All of the participants were Caucasian native speakers of SAE. Ten instances of "hello" repeated twice for each of the three dialects comprised one block of data. These 60 tokens were randomized. Each participant was twice presented with the block of data so that a total of 120 tokens were presented to each participant. During a 2-second pause, participants indicated, for each token, which dialect they believed they heard. The data below are combined from the two iterations of the experiment.
Results and discussion

[...]

The results show that, overall, participants are able to successfully identify tokens among the dialects when only hearing the word *hello*.

[...]

We have established that listeners are capable of discriminating among dialects and that this discrimination is eased by a low-level identification of the dialects in a short amount of time. What still remains is at least a partial explanation of what phonetic features of the speech stream act as sociolinguistic markers.

EXPERIMENT 4

We performed a variety of acoustic measurements on the same “hello” data used in the perceptual experiment (Experiment 3). In this acoustic experiment we looked for acoustic differences between the dialects to determine cues listeners use to identify dialects. Our answer, from the acoustic measurements, is that at least four acoustic cues are viable for distinguishing at least one dialect from the other two: the frequency of the second formant in the /ɛ/, the location in the word where the pitch reaches a peak, the duration of the first syllable /he/, and the harmonic-to-noise ratio (HNR).

[...]

Method

Following other studies (e.g., Klatt & Klatt, 1990; Stevens & Hanson, 1995; Walton & Orlikoff, 1994), we measured each instance of “hello” for several acoustic characteristics. We measured the segment, syllable, and word durations (and ratio of these durations to the duration of the word). [...]. The 30 tokens (10 for each dialect) were compared on 28 variables by running a three-way analysis of variance (ANOVA) for the different variables.

Results and discussion

[...]

[The authors find that how much /ɛ/ is fronted in *hello* is the best cue for working out how people distinguish the three varieties: ChE and AAVE from SAE. The other phonetic features they checked were not significant.].

[...]

CONCLUSION

The experiments described in this article link housing opportunities with dialect use. Housing discrimination induced by speech characteristics does take place. Dialects are discriminated by normal listeners. Very little speech is required for dialect identification—a single word suffices. Dialects are discriminated with acoustic phonetic measures. Patterns of perceptual misidentification point to a multiplicity of factors for further study.

Looking back at the experiments as a whole, we should wonder whether the acoustic characteristics of the guises influenced the outcome of the discrimination survey. Consider that in Table 9.1 percentages of appointments made using ChE guises are the lowest in four of five geographic areas. Although we might be led to believe from this result that Hispanic Americans experience more discrimination than African Americans, we could well be misled. In [Experiment 3], however, ChE tokens are identified much better than AAVE tokens. Putting the two observations together, we see a possibility that ChE tokens as produced by Baugh are more salient as exemplars of nonstandard speech than his AAVE tokens, and they are thus less likely to be confused with the SAE tokens.

[...]

NOTES

1. What we are suggesting goes beyond what is covered under rules of evidence (Graham, 1987). Rule 901(b)(5) states that voice identification is permissible as evidence to identify the voice. We propose that rules of evidence govern the identification of race by way of a speaker’s voice. Thus, if a plaintiff shows that she has a voice representative of a nonstandard dialect and that the defendant can ascertain when any voice possesses characteristics of the dialect under review, then evidence is established in favor of the plaintiff.

2. In fairness to the parties involved, the judge ruled in favor of the defendants because of a preponderance of evidence indicating that Ms. Rancatti had neither acted in a racist fashion nor acted habitually in such manner.

REFERENCES

City of Chicago v. Matchmaker Real Estate Sales Center, 982 F. 2d 1086 (7th Cir. 1992).

QUESTIONS

1. What three guises were tested in this study?
2. In Experiment 1,
 a. which guise elicited most appointments to view an apartment overall?
 b. where was an African-American English speaker most likely to get an appointment?
 c. where was a Chicano English speaker most likely to get an appointment?
3. Did Experiment 2 validate the use of the three guises or not?
4. In Experiment 3, why did they choose to focus on the word "Hello"?
5. What part of "Hello" turns out to carry the most information about speaker ethnicity?

1. If the subjects in Experiment 4 usually identified each guise correctly on the basis of one word, what are the implications of this for future use of the matched guise technique?
2. It is common to use university students as the subjects for linguistic experiments like these. For example, in Experiment 2, the different guises were validated by university students. Do you think university students are a good source on which to base attitudes data? Why (not)?
 Consider also the methods used – do you think forced choice questions were a good way to elicit perceptions?