Indexing, Coreference, and Logical Form in the Government-Binding Theory

Howard Lasnik
University of Connecticut
March 1982

I. Conditions on Indexing

1) *We like me
2) *We like us
3) *We believe me to be intelligent
4) \{He\} likes him [\{He\} \neq him]
5) They like him [they \neq him]
6) Assign referential indices freely
7) A pronoun must be free in its Governing Category
 (An NP is bound if coindexed with a c-commanding NP, free otherwise)
 [cf 'RI' from 'Conditions on Transformation']
8) Approximate formulations of the relevant definitions
 -- The Governing Category of an NP is the minimal NP or S in which it is governed.
 -- a governs b iff a is a lexical category (V, A, N, ??) or tense, and a
 minimally c-commands b. Ex's = The Governing Category of the subject or
 object in a finite clause is the finite S. The G. C. of the object of an
 infinitive clause is the infinitive S.
9) *He\textsubscript{1} likes him\textsubscript{1} him is not free in its Governing Category
10) He\textsubscript{1} likes him\textsubscript{2} O.K.

11) An anaphor must be bound in its Governing Category
12) *Myself\textsubscript{1} left
13) *They\textsubscript{1} like themselves\textsubscript{2}

14) A 'name' must be free (cf. Disjoint Reference rule from 'Remarks on Coreference'

15) *\{J\textsubscript{1}\} likes John\textsubscript{1}
 \{He\textsubscript{1}\}
16) *\{J\textsubscript{1}\} thinks J\textsubscript{1} is intelligent
 \{He\textsubscript{1}\}
17) Who [e\textsubscript{1} thinks [he\textsubscript{1} is intelligent]]
18) *Who does [he\textsubscript{1} think [e\textsubscript{1} is intelligent]]

Apparently, a variable patterns like a name. This is the so-called Crossover
Phenomenon.

II. The Interpretation of Indexing

19) \ldots \text{NP}\textsubscript{i} \ldots \text{NP}\textsubscript{j} \ldots \text{ i \neq j} <\text{a) non-coreference}
\ldots <\text{b) disjoint reference}
(19b) is the required interpretation, otherwise the disjoint reference effect cannot be described. In (1) and (5), a non-coreference requirement will not suffice.

20) \(\ldots \text{NP}_4 \ldots \text{NP}_4 \ldots \) Overlap in reference (otherwise 'We think I will win' would be impossible)

III. Problems

21) Split antecedents

\[\begin{array}{c}
1 & \text{they } \not\in \text{ John; } \not\in \text{ Bill} \\
2 & \text{they } \not\in \text{ John; } \not\in \text{ Bill} \\
3 & \text{they } \not\in \text{ John; } \not\in \text{ Bill}
\end{array} \]

22) \(\text{They}_1 \) like themselves \(\text{should be O.K. even if they } = \text{ Bob \\ John,} \) themselves \(= \text{ Bob, John, Sam,} \) clearly an incorrect result.

IV. New Improved Theory (= Old Theory: On Binding)

23) 'On Binding' theory [as modified in Freidin and Lasnik]
 a. Assign referential indices freely.
 b. Assign 'anaphoric' index to all non anaphors
 c. Reindex an NP \(_1 \) that is free(1) in an opaque domain
 \(\text{or NP}_j, \ldots \{1\ldots\} \)
 d. \(\not\text{NP}_c \)

24) John \(_1 \) likes himself \(_2 \)
 \(\not\)

25) John \(_1 \) likes himself \(_1 \)

26) John \(_1 \) thinks that himself \(_1 \) will win
 \(\not\)
 \(\text{or 2} \)

27) \(\ldots \text{NP}_1 \ldots \text{NP}_1 \ldots = \text{coreference} \)

28) \(\ldots \text{NP}_1 \ldots \text{NP}_2, (1) = \text{disjoint reference} \)

29) They \(_1 \) like him \(_2, (1) \) they \(\not\) him

30) \(\ldots \text{NP}_1 \ldots \text{NP}_2, \not\ldots = \text{free reference} \)

31) John \(_1 \) thinks he \(_2, \not\) will win \(\text{John can be he but need not} \)
 \(\text{from reindexing of (1)} \)

32) John \(_1 \) told Bill \(_2, (1) \) that they \(_3, \not\) should leave

33) John told Bill about themselves
V. Level of Application of Binding Theory

35) Whose book did he read
36) Who \(x \rightarrow \) he \(\lambda \) read \(x \)'s book

37) Whose book \([\text{he} \lambda \text{read} \ x']\) This representation does not capture the fact that (35) displays the crossover effect.

38) Binding theory follows the LF rule of reconstruction which changes the S-structure of (35) into (36).

VI. GB Theory revised

Can (14) be eliminated? For (18), it can.

39) Who does \([\text{he} \lambda \text{think} \ [c \lambda \text{is intelligent}]]\)

e must receive some interpretation, but all possibilities are ruled out.

40) a. \(e \) is not a variable here because it is not locally bound by an operator
 b. \(e \) is not a 'trace' because it is not bound in its governing category
 c. \(e \) is not 'PRO' (the EQUI empty category) because it is governed. But
 PRO is a pronominal anaphor, hence cannot be governed.

41) This argument does not extend to (35) however, and (15), (16) are also left unaccounted for.